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ABSTRACT 

The differential equations of equilibrium of a thin, homogeneous, 
isotropic, elastic shell of revolution subjected to axisymmetric thermal 
loading are established. In particular, the results are specialized to the 
case of a parabolic shell. An approximate solution of these equations is 
found by the method of asymptotic integration. As an illustrative 
example, the stresses and rotation are computed for the case of a para- 
bolic shell with an attached edge ring, subjected to a thermal gradient 
through the thickness of the shell. & clT.Cfbh 

1. GENERAL THEORY OF STEADY-STATE STRESS IN A THIN SHELL OF REVOLUTION 
SUBJECTED TO AXISYMMETRIC THERMAL LOADING 

(5) 
The Duhamel-Neumann law (Ref. 1) states that the 

€e = - (g + Z K e )  
z 
T? 

strains in an elastic body undergoing thermal expansion 
are related to the stresses by 

(1) 

(2) 

1 + -  

where e+, €6 are the midplane strains. 
u+ - v u e )  + aT E+ = -( 

G = 7 ( a e  - VU+) + aT 

1 
E 

1 
The midplane strains are expressed in terms of displace- 

ments (see Fig. 1) as follows: 
I; 

(3) 

where T represents the difference between the elevated 
and equilibrium temperatures in the shell, and will be 
assumed to be an arbitrary function of the polar angle 4, 
and a linear function of the thickness variable z (see Fig. 1). 
It will be assumed throughout this Report that the varia- 
tions in temperature are sufficiently small so that the 
corresponding variations in the elastic moduli and co- 
efficient of thermal expansion are negligible. 

The strains at a point in the shell are given in terms of 
midplane strains by 

(4) 
1 

E+ = - (E+ + - z  I + -  
rl Fig. 1. Coordinate and displacement sign convention 

1 
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(9) 
1 
r2 Ke =--Cot+ 

where V represents the angle of rotation of a tangent to 
a meridian and is given in terms of displacement by 

V=-(.+$) 1 
rl 

Solving Eq. (1) and (2) for stresses yields 

1 - v  
EaT(+,z) 

EaT(+,z) 

(E+ + VEe) - E 
u+ = - 1 - v2 

E 
(€e + V E ~ )  - 

u.9 = 1 - v  

The stress resultants (see Fig. 2) are defined by 

Ng =t~+(l+ - E ) d z  
2 

Fig. 2. Force sign convention 

2 

h 

Ne = l : u e ( 1 +  - E)dZ (14) I 

Mg =/:w+ (1 + :) dz 

Me =G Zue (1 + E) dz 

Q+ = r u + .  -5 (1 + 2)dz  r2 

2 

h 

(15) 
I 

(16) 
2 

(17) 

The form of Eq. (11) and (12) suggests that the stress 
resultants given by Eq. (13)-( 16) can be written in the 

where 

h 

N* = - (€e + V E ~ )  (1 + ;)dz 
2 

h 

2 
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Substitution of Eq. (4) and (5)  into Eq. (22)-(%) yields, 
upon neglect of higher order terms, 

N t  = D ( 4  + Z e )  

Nf = D(EB + Z+) 
M: == K(K+ + Y K B )  

(30) 

(31) 

(32) 

Eh 
1 - v' 

Eh3 

D = -  

K =  12(1- v') 

The differential equations of equilibrium as given by 
Novozhilov (Ref. 2), when expressed in terms of Eq. 
(iSj-(Zij, become 

Similarly, the differential equations of compatibility as 
given by Novozhilov (Ref. 2), when expressed in terms 
of the stress resultants, are given by 

Combining Eq. (36) with Eq. (37) we obtain the following 
approximate result 

where 
M* = M t  + M t  

Substitution of Eq. (39) into Eq. (34) yields 

1 d  1 dM* - -(roNf ) - Nf  rl cos + + 
forl [ d+ ] r,2 (1 + V )  d+ 

Similarly, substitution of Eq. (34) and (39) into Eq. (37) 
yields, upon neglect of higher order terms, 

where 
N* = N :  + N: 

Substitution of Eq. (39) into Eq. (35) yields 

N t  N t  1 
rl rz l + v  

- + - - q Q r - - G ( M * )  

where 

Substitution of Eq. (34) and (39) into Eq. (38) yields, 
upon neglect of certain higher order terms, 

M t  - vMg + M$ - v M t  + EG(N*) 
rl 7 2  12 

(43) 
Making the change of dependent variable in Eq. (4), 

3 
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(45) 

r = rl + rz (46) 

where 

h 
c =  

V ’ i q F - F )  
i= +i 

and adding the result to the product of Eq. (41) with 
i/c( 1 - v‘) leads to 

Similarly, substituting Eq. (44)-(46) into Eq. (42), and add- 
ing the result to the product of Eq. (43) with - i/c( 1 - v’) 
yields 

It follows directly from Eq. (47) and (48) that the thermal 
stress problem can be considered as an “equivalent surface 
load problem,” the equivalent surface loads being 

(49) 

Equations (47) and (48) can be combined in order to 
produce a single equation involving r as the dependent 
variable, and an equation relating rl to r: 

4 

For convenience, that portion of the integral appearing 
in Eq. (52) containing “equivalent surface loads” will be 
referred to as follows: 

I(+) = IO: ( 9 z T  COS 4 - 9 + ~  sin 4) T i r z  sin #J d+ (54) 

Substitution of Eq. (49) and (50) into Eq. (54) yields 

O + r0 sin + N T +  I O “  - ic (1 + V) cos 4 

In particular, if the shell is closed and smooth at the apex 
(i.e., not pointed), then we can select +” = 0, C, = 0. In 
this case it can be shown that r1 (0) = r2 (0), and thus 
it follows that 

TZ 

rl 
+ - sin + cos + - 

Thus, the problem has been reduced to the integration of 
Eq. (51). 
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II. INTEGRATION OF THE SHELL EQUATIONS FOR THE CASE OF A PARABOLIC SHEU 

OF REVOLUTION SUBJECTED TO AXISYMMETRIC THERMAL LOADING 

If the shell is parabolic the principal radii of curvature 
are given by 

a r,  = - 
cos3 4 

a 
1.2 = - cos 4 (57) 

where a is twice the focal length of the paraboloid. Sub- 
stitution of Eq. (56) and (57) into Eq. (51) leads to 

d21' d r  iu r=- W4J) (58) - + 2 ~ 0 t 2 4 -  + - d4 ccos54 c cos54 

In the case of thermal loading only, Eq. (53) reduces to 

The homogeneous part of Eq. (58) is given by 

dr* iu + 2c0t24- + -r* = 0 (so) d2 I?* 
dV d4 ccos54 

A change of dependent variable 

in Eq. (60) yields 
- 

where 

Novozhilov (Ref. 2) points out that a solution of Eq. (62) 
which neglects terms of order 0 ( d a )  compared with 
terms of order 0 (1) is given by 
- r 

&iizz$ 

where A,, A, are arbitrary complex constants of the form 

A, = A; + iA; 

A, = A: + iA; 
An approximate particular solution of Eq. (58) is given by 

r p a r t i e u l n r  = F(4) (65) 

Hence it follows that the complete solution of Eq. (58) is 

r = r* + ~ ( 4 )  (66) 

Various values of the elliptic integral, appearing in 
Eq. (W, 

have been computed, as shown in Fig. 3. By using Eq. 
(44), (46), and (67) we obtain 

e-€ [(A', + A;) sin E + (A; - A;) COS E ]  

+ d [(A: + A;) sin 6 + (A: - A" 

+- cos4 J(4) (a) 
a sin2+ 

+. deg 

Fig. 3. Plot of R(4) vs 4 

5 
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* - e-t [A: cos  ( - A: sin 61 N e  - 

+ et [A; cos 6 + A sin 61 

dF(+) cos3+ cot + 7 h2 
+ lza(1 + v) 9 

6 

The latter results are derived on the basis of neglecting 
terms of order 0 ( c /a )  compared with the terms of order 
0 (1); also, ( is defined by 

Since the stress resultants are required to remain finite at 
the apex of the shell, we obtain 

A, = A; + iA: = 0 

or 

A : = O , A : = O  
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111. AN ILLUSTRATIVE EXAMPLE 

Assume that the edge of the shell is attached to an edge 
ring of arbitrary cross-sectional shape, at a point on the 
ring's major horizontal diameter (see Fig. 4), which is in 
turn attached to supports. If, in particular, the edge ring 
is sufficiently rigid and the supports are such that the 
vertical displacement Au given by 

Au = wcos + + usin+ 

is uniform at the edge of the shell, the boundary condi- 
tions (see Ref. 3) are given by 

(73) 

where 

6 = the value of + at the edge of the shell 
E ,  = Young's modulus for the ring 
A = cross-sectional area of the ring 
a1 = coefficient of thermal expansion of the ring 

(75) 

Z l  = moment of inertia of the ring about the centroidal 

and where F h  is the horizontal component of the stress 
resultants given by 

axis in the plane of the ring 

Fh=-Q+Sin+- -+COS+ (76) 

and the horizontal component of displacement & is given 
by 

(n) 
- 

Ah = - W Sin+ f U C O S  = 50 €e 

Since the shell is subjected only to thermal loading, the 
vertical component of the stress resultant must vanish. 
Theref ore, 

Q+ = -+tan+ (78) 

Fr = - N+sw+ (79) 

thus reducing Eq. (76) to the form 

The arbitrary constants A:, A;can be found by substitu- 
tion of Eq. (77)479), (lS>(ZO), (68)-(70), and (72) 
into Eq. (74) and (75), as follows: 

where 

and 4 t (+o),  which can be found from Fig. 3. 

7 
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I 
Fig. 4. Configuration of sample problem 

If the distribution of temperature change vanes linearly 
through the thickness of the shell such that 

T = T ,  + z T ,  (83) 

where T,, T ,  are independent of $5 and z, and represent 
respectively the temperature rise of the midplane and the 
gradient of the temperature rise, namely, 

T ,  = i [ T ( i )  + T (- i)] (84) 

(85) 

Thus we obtain the following relations from Eq. (26)-(29): 

Eah 
N T +  = - 

l - v  

M T + = -  Eah3 - 4 + T 2 ]  (88) 12(1-v) a 

M T e  = - 12(1- Eah3v) [" y3  $5 + T 2 ]  (89) 

In particular, if T,, T ,  are independent of $5, Eq. (55) and 
(59) take the simple forms 

hz T 2  cos $5 (1 + cos2 $5) 
Eah 

As a numerical example of the use of the latter results, 
the following problem is considered: a nickel tubular edge 
ring of Sin. outer diameter and wall thickness of 0.01 in. is 
attached at $50 = 30" to a parabolic shell for which 
~ ~ ( $ 5 ~ )  = 4.75 ft (thus, the focal length of the shell is 4.12 
ft). The shell has the same wall thickness as the edge ring, 
and is made of the same material. The material properties 
are given by 

E = E, = S O X  10'psi 
in. 

in. - "F a = a1 = 7.2 X 

v = 0.37 

The shell ring system is subjected to a linear distribution 
of temperature change 

T = T ,  + z T 2  

where T, ,  T ,  are independent of $5. 

Substitution of Eq. (88), (go), and (91) into Eq. (SO) ,  (81), 
and (82) yields the following values for constants A:, A: : 

- _  A,' - - (?-74.57 ~0.630 x 10-2 + 0.640 x 1 ~ 3  k] 
Ti  

(92) 

- -  A," - c74.57 [ - 16.70 X 1W + 13.85 X k] Ti 
(93) 

where 

A plot of vs $5 is shown in Fig. 5. 

The maximal stresses can be found by substitution of 
Eq. (92) and (93) into 

Parametric graphs of these quantities and the rotation 
V / T ,  are shown in Fig. &9. The arrows in each of these 
graphs indicate that the values shown at 28.5" continue 
uniformly toward the apex of the shell, $5 = 0". The 
notations a;, a: refer to the positive sign choice in Eq. 
(94) and (95) where a;, U; refer to the negative sign 
choice. It is interesting to note that at a fixed value of k 
and T ,  the extrema1 values of the surface stresses and the 
rotations always occur within the characteristic length of 
the shell, which is of the order 0 (3 in.) or 0 (1 "). 

8 
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IO 1.; 0 0 

9, deg 

Fig. 5. Plot of 6 vs 4 for sample problem 

+, deg 

Fig. 6. Plot of U; vs 4 for sample problem 

9 
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I 
28.5 29.0 29.5 30 

-20- 

+. deg 

Fig. 7. Plot of U; vs 9 for sample problem 

-5 
28.5 29 0 29.5 30.0 

+. deg 

Fig. 8. Plot of a; vs for sample problem 

1.5 30.0 

Fig. 9. Plot of rotation vs 9 for sample problem 

1 0  
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IV. CONCLUSION 

I ' 
1 ' 

The axisymmetric, thermoelastic differential equations 
have been reduced to a single second-order equation 
involving complex dependent variables. This equation has 
been approximately solved for a parabolic shell by 
making use of asymptotic integration. The homogeneous 
solution is restricted to a region away from the apex + = 0. 
The second-order equation can also be solved approxi- 
mately for other types of shells of revolution by the same 
method (see Ref. 2). 

I 

' 

The stress distribution has been plotted in Fig. 6-8 for 
the sample problem of a parabolic shell with an edge ring 
and a temperature gradient through the shell thickness. 
Figures 6-8 show that the stresses vary rapidly in the 
region close to the edge 4 = +o and then are uniform 

throughout the interior of the shell. This is the behavior 
one would expect. The effect of the parameter k on the 
stresses and rotation is seen in Fig. 6-9. Increasing values 
of k represent increasing values of the temperature 
gradient relative to the midplane temperature. Another 
interesting result is that the parabolic shell considered 
behaves much the same as a spherical shell of the same 
opening angle 4, and value of r, at 4 = +o. This is ex- 
plained by the fact that the radii of curvatures of the 
parabolic shell considered do not vary much in the region 
4 = 0 to +, = 30". The effect of the variation of the radii 
of curvatures can be seen from Fig. 3. The deviation of 
the plot R(+) vs 4 from a straight line, which is a measure 
of the deviation of a parabolic shell from a spherical shell, 
is seen to be quite small in the region 0 4 + A 30". 
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C 

D 

E 

F h  

K 

MO 

M* 

N* 

N o  
N o  

NOMENCLATURE 

arbitrary complex constants 

twice the focal length of the 
parabolic shell 

h 
diqF-7j 

Eh 
1 - v2 

Young’s modulus 

horizontal component of stress 
resultant 

thickness of shell 

Lf(qz.1. cos + - q 9 T  sin +) 

X r1 r2 sin + d+ 

Eh3 
12(1 - v’) 

T2 
TI 
meridional bending moment per 
unit length 

circumferential bending moment 
per unit length 

Mt + MZ 
N t  + Nf 

meridional force per unit length 

circumferential force per unit 
length 

- 

K e  

V 

meridional radius of curvature 
circumferential radius of 
curvature 
rz sin + 
difference between the elevated 
and equilibrium temperatures 
defined by Eq. (83)-(85) 

meridional 

meridional displacement 
radial displacement 
thickness variable 
coefficient of thermal expansion 
defined by Eq. (44)-(45) 
r1+ rz 
defined by Eq. (60) 
r* d q  
horizontal component of 
displacement 
vertical component of 
displacement 
meridional strain 
circumferential strain 
transverse shearing strain 
change in curvature in meridional 
direction 
change in curvature in 
circumferential direction 
Poisson’s ratio 

defined by Eq. (18) and (29) 

transverse shear per unit length 
load per unit area tangent to 
meridian 
radial load per unit area 
surface loads equivalent to the 
thermal load [see Eq. (49) and 
(50) 1 

meridional stress 
circumferential stress 
polar angle between axis of 
symmetry and normal to shell 
polar angle at edge of shell 
arbitrary constants 

1 2  
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